skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andrew J. Blumberg, Michael Lesnick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Čech and Rips constructions of persistent homology are stable with respect to perturbations of the input data. However, neither is robust to outliers, and both can be insensitive to topological structure of high-density regions of the data. A natural solution is to consider 2-parameter persistence. This paper studies the stability of 2-parameter persistent homology: We show that several related density-sensitive constructions of bifiltrations from data satisfy stability properties accommodating the addition and removal of outliers. Specifically, we consider the multicover bifiltration, Sheehy's subdivision bifiltrations, and the degree bifiltrations. For the multicover and subdivision bifiltrations, we get 1-Lipschitz stability results closely analogous to the standard stability results for 1-parameter persistent homology. Our results for the degree bifiltrations are weaker, but they are tight, in a sense. As an application of our theory, we prove a law of large numbers for subdivision bifiltrations of random data. 
    more » « less